
[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

198

GLOBAL JOURNAL OFENGINEERING SCIENCE ANDRESEARCHES
DiscoTEX: A framework of Combining IE and KDD for Text Mining

Dimpy
Assistant Professor, Department of Computer Science & Engineering

Ganga Technical Campus

ABSTRACT
Text mining based on the integration of Information Extraction (IE) and traditional Knowledge Discovery from Databases
(KDD). We first present the idea of combining IE and KDD serially for text mining, explain how a document in
this system can be represented as a vector of textual elements, and empirically show that rules mined from IE-
extracted data are nearly as accurate as those discovered from manually extracted data.

Keywords: DiscoTEX, Text mining etc.

1. INTRODUCTION
The assumption of traditional data mining that the information to be mined is already in the form of a relational database
does not hold in many cases. For a number of applications, electronic information is available only in the form of
unstructured natural language documents which cannot be directly analyzed by statistical data mining methods.
Information Extraction, a task that has attracted increasing attention since the start of the Message Understanding
Conferences (MUCs), addresses the problem of transforming a corpus of textual documents into a more structured
database.

Since structured databases transformed from unstructured texts by information extraction can be supplied to traditional
data mining as input, IE can play an essential role in data preparation for text mining as illustrated in Figure 1. In the
proposed IE-based text-mining framework, called DiscoTEX (Discovery from Text EXtraction), the IE module
identifies specific pieces of data in raw text, and the resulting database is provided to the KDD module for further
mining of knowledge[1].

Fig 1. Overview of IE-based text mining framework

By manually annotating a small number of documents with the information to be extracted, a fairly accurate
IE system can be induced from this labeled quantity and then applied to a large body of raw text to construct a
large database for mining. In this way, a small amount of labeled training data for an IE learning system can be
automatically transformed into a large database of structured information ready to be mined with traditional KDD methods.

General IE learning systems such as Rapier[2][3] or BWI can be used to construct an IE module for DiscoTEX. After
constructing an IE system that extracts the desired set of slots for a given application, a database is constructed from a
corpus of texts by applying the extractor to each document to create a collection of structured records. Standard KDD
techniques such as C4.5rules can then be applied to the resulting database to discover interesting relationships.

2. DATA REPRESENTATION
2.1 DATA REPRESENTATION

Most existing IE learning systems represent a document as a sequence of characters or tokens. Since the DiscoTEX
framework relies on an IE system as a pre-processing module, a natural way to handle data is to treat the slot-values as

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

199

sequences of characters, i.e. Strings. A classical way of handling long strings is to treat them as "bag-of-words". Standard
approaches to text categorization and information retrieval makes use of the bag-of-words (BOW)[5] text
representation technique that maps a document to a high dimensional feature vector, where each entry of the vector
represents the frequency of a term. This approach only retains the frequency of the terms in the document while
losing the information on the order of the terms. The BOW model is usually accompanied by the removal of
non-informative words (stop-words) and by the optional replacing of words by their stems. On the other hand, many
wrapper-learning systems represent a document as a linear sequence of tokens as they are more concerned with the
structural cues based on special characters such as carriage returns[6].

One problem is that different applications need different representations. To allow more flexibility in text mining
framework, we augment the feature vector model of traditional machine learning approaches with the bag-of-words
model which is the most common scheme for representing long documents, the token-based model for preserving the
order of terms, and the simple sequence-of-characters model for shorter strings. Users are able to specify which
model should be applied to each slot in advance. For example, we can use string edit distance as the similarity
metric for shorter strings and cosine similarity for longer fields. One advantage of this approach is that a new
type of document representation and its similarity metric can be easily plugged into the system[6][7].

Specifically, we represent an IE-processed document as a vector of slot values, one for each slot filler. A rule can be
represented as an antecedent that is a conjunction of slot-values for some subset of slots and a conclusion that is a predicted
slot-value for another slot. Sometimes multiple fillers can be identified for a slot in many domains. To allow
multiple items for each slot, we extend the simple "vector-of-slot-values" model so that a slot-value can contain a set of
distinct items.

To summarize, we model documents as vectors of slot-values where each slot-value corresponds to each slot of the
information extraction system with the Backus Naur Form (BNF) notation. Each slot can be either an item or a set of items
which can be long documents, short strings, or numbers. In our system, we modeled each filler as either 1) long documents
which are represented using the vector-space model (BOW Model), 2) a list of tokens (Token Model), 3) short strings as a
list of characters (String Model), or 4) numbers including dates (Numerical Model).

Representation

<document> :: <document> <slot-value> | empty .

<slot-value> :: <item> | <slot-value> <item> .

<item> :: <bow> | <string> | <token> | <number> .

Figure 2 : Document representation

Model Representation Similarity Metric

BOW Bag of Words Cosine Similarity

String Sequences of Characters Character-Level Edit Distance

Token Sequences of Token Token-Level Edit Distance

Number Numbers Numeric Distance

Table 1 Document models and corresponding similarity metrics

2.2 DATA TYPES

Table 1 summarizes the models and the corresponding similarity metrics for textual items.

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

200

BOW Model

The BOW model follows the vector space model of handling long strings as "bags-of-words". In the BOW model,
we eliminate 524 commonly-occurring stop-words (e.g. "the", "is", and "you") but do not perform stemming. For
example, the intersection of two bags is defined as a bag that contains as many as the minimum of elements in
both bags. The similarity between two slot-values with the BOW model is measured by computing the cosine similarity of
two BOWs[5].

String Model

The string model represents short strings as a list of characters. The similarity metric for the string model is the character-
level edit distance.

Token Model

The token model used in some wrapper learning system is also introduced. In our model, a token list is defined as an
ordered sequence of tokens x 1, x 2, ... x n, where x i in T (set of tokens) is a term. Similarly, a string is defined as an
ordered sequence of characters y 1, y 2, ..., y n, where y j is a character. Note that the token space for the token model shares
the same set of terms in the BOW model.

Number Model

The number model represents numerical values. The numerical difference is used to measure the similarity between two
numbers.

3. Initial DiscoTEX
System Architecture

In this section, Rapier is used to construct an IE module for DiscoTEX. Rapier was trained on only 60 labeled documents, at
which point its accuracy at extracting information is somewhat limited; extraction precision (percentage of extracted
slot fillers that are correct) is about 91.9% and extraction recall (percentage of all of the Slot correct fillers extracted) is
about 52.4%[1][2].

Slot Model

Title String

Director String(Multiple)

Writer String(Multiple)

Genres String(Multiple)

Keyword String(Multiple)

Plot BOW

Year Number

Table 2: Slots and slot-value types for movie-descriptions data set

. We purposely trained Rapier on a relatively small corpus in order to demonstrate that labeling only a relatively small
number of documents can result in a learned extractor capable of building a database from which accurate knowledge

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

201

can be discovered.

In order to discover prediction rules, we treat each slot-value pair in the extracted database as a distinct binary feature.
For instance, given a set of n job postings, we could go through every posting and list the job skills that it has and does not
have. We can represent a single postings list of required job skills by a simple binary vector which has a 1 in the ith slot if
the posting has the ith skill specified and a 0 otherwise. In this way, the n job-posting messages are converted into n
different binary vectors. After a set of binary vectors are obtained through the conversion, rules are learned for predicting
each feature of the vectors from all other features.

We have studied C4.5rules to [2] induce rules from the resulting binary data. Ripper runs significantly faster since it
has an ability to handle set-valued features (Cohen, 1996b) to avoid the step of explicitly translating slot fillers into a
large number of binary features. Specifically, rules are induced for predicting each piece of information in each database
field given all other information in a record. In general, any standard classification rule-learning methods can be employed

• Oracle Є application and QA Partner Є application SQL Є language

• C + + Є language and C Є language and CORBA Є application Windows inplatform

• HTML Є language and WindowsNT Є platform and Active Server Pages Є application Database Є area

• UNIX !Є platform and Windows ! Є platform and Games Є area 3D Є area

• Java Є language and ActiveX Є area and Graphics Є area Web Є area

Figure 2: Sample rules mined for computer-science job postings for this task.

Sample Rules

Discovered knowledge describing the relationships between slot values is written in a form of production rules. If there is a
tendency for Web Design to appear in the area slot when Director appears the in applications slot, this is represented by the
production rule, Director Є application Web Design Є area. Rules can also predict the absence of filler in a slot.
Sample rules mined by C4.5rules from a database of 600 jobs extracted from the USENET newsgroup austin.jobs are shown
in Figure 2.

4. Automatically Extracted Data vs. Manually Extracted Data
The accuracy of current IE systems, whether built manually or induced from data, is limited. Therefore, an
automatically extracted database will inevitably contain significant numbers of errors. An important question is whether the
knowledge discovered from this "noisy" database is significantly less reliable than knowledge discovered from a cleaner
traditional database.

Slot Avg
Numfiller AngNumDoc NumFiller

Language 0.13 2.30 80

Plateform 0.17 7.11 104

Application 0.30 3.76 179

Area 0.60 1.17 361

Total 1.21 1.38 724

Table 2: Statistics on slot-fillers

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

202

In this section, we present experiments on the job postings domain demonstrating that knowledge discovered from an
automatically extracted database is close in accuracy to that discovered from a manually constructed database with a
simple implementation of the DiscoTEX framework. Since all the extracted items in this domain are short strings,
they are represented as simple strings.

4.1 EXPERIMENTAL METHODOLOGY

Discovered knowledge is only useful and informative if it is accurate. Discovering fluke correlations in data is not
productive, and therefore it is important to measure the accuracy of discovered knowledge on independent test data. The
primary question we address in the experiments in this section is whether knowledge discovered from automatically
extracted data (which may be quite noisy) is relatively reliable compared to knowledge discovered from a manually
constructed database[6].

Ten-fold cross validation was used to generate training and test sets for extraction from the set of documents. Rules
were mined for predicting the fillers of the languages, platforms, applications, and areas slots, since these are usually
filled with multiple items that have potential predictive relationships. The total number of slot-values used in the
experiment is 476: 48 slot-values are for languages slot, 59 for platforms, 159 for applications, and 210 for areas. Statistics
on these slot-fillers, including the average number of fillers per document, average number of documents per filler,
and the total number of distinct filler strings in the corpus.

In order to test the accuracy of the discovered rules, they are used to predict the information in a disjoint
database of user-labeled examples. For each test job, each possible slot-value is predicted to be present or absent
given information on all of its other slot-values. Average performance across all features and all test examples is then
computed.

Figure 3: The system architecture for evaluation

The rules produced by Ripper and C4.5rules were found to be of similar accuracy, and the experiments in this
section employ Ripper since its computational time and space complexity is significantly less. The overall architecture of
the system for evaluation is shown in Figure3

The classification accuracy for predicting absence or presence of slot fillers is not a particularly informative
performance metric since high accuracy can be achieved by simply assuming every slot filler is absent. For
instance, with 60 user-labeled examples, DiscoTEX gives a classification accuracy of 92.7% while the all-absent
strategy has an accuracy of 92.5%. This is because the set of potential slot fillers is very large and not fixed in advance,
and only a small fraction of possible fillers is present in any given example. Therefore, we evaluate the performance of

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

203

DiscoTEX using the IE performance metrics of precision, recall, and F-measure with regard to predicting slot fillers.
These metrics are defined as follows:








presentbetopredicatedvaluesslotofmunber

predicatedcorrectlyvaluesslotpresenntofnumber
precision

(1)

Present Absent

Predicated to be
Present

m x p (n-m) x p

Predicated to be
Absent

m x (1-p) (n-m) x (1-p)

Table 3: The expected outcome for random guessing

valuesslotpresentofnumber

predicatecrrectlyvaluestpresentslonumberof
recall

 (2)

F-m easure is the harmonic mean of precision and recall and is computed as follows (when the same weight is given to
precision and recall):

valuesslotpresentofmunber

recallprecision
measureF

**2


(3)

In order to obtain non-trivial bounds on precision and recall, a simple random guessing method is used as a
benchmark. This approach guesses a slot-value based on its frequency of occurrence in the training data. For instance, if
"Java" occurs as a programming language in 29% of jobs in the training data, then this approach guesses that it occurs 29%
of the time for the test data. Instead of simulating this method, we analytically calculated its expected precision and recall
for each slot-value. The expected outcome for this strategy for a given slot-value is summarized in Table 3, where p is the
percentage of times the slot-value appears in the training examples, n is the total number of the test examples and m is the
number of times the slot-value occurs in the test data. Using the information in the table, the precision and the recall
for random-guessing is determined as follows:

nm
pmnpm

pm
precision /

))(()(





 (4)

p
pmpm

pm
recall 






))1()()(

Therefore, the benchmark precision for a slot-value is its probability of occurrence as estimated from the test data and the
recall is its probability of occurrence as estimated from the training data. The only difference between the two is due to
sampling error.

4.2 RESULTS AND DISCUSSION

Because of the two different training phases used in DiscoTEX, there is a question of whether or not the training set for IE
should also be used to train In realistic situations, there is no reason not to use the IE training data for mining since the

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

204

human effort has already been expended to correctly extract the data in this textFigure 3: Precision and recall with disjoint
IE training set the rule-miner.

Even with an extractor trained on a small amount of user-labeled data, the results indicate that DiscoTEX achieves a
performance fairly comparable to the rule-miner trained on a manually constructed database, while random-guessing
does quite poorly. Figure 3.6 indicates that DiscoTEX does relatively worse with the first 60 training examples
with respect to recall, but quickly improves with 60 additional examples.

.

Figure 4: F-measure for DiscoTEX by slots

The results also show that the precision of DiscoTEX seems to start leveling of a bit sooner, this is presumably
due to the fact that extraction errors put a somewhat lower ceiling on the performance it can eventually achieve.

Figure 4 presents F-measures for DiscoTEX's performance on individual slots. Not surprisingly, the
Programming Languages slot with the least number of possible values shows the best performance, and the Area slot
with as many as 210 values does poorly. More interesting is the fact that different slots show quite different learning
rates.

5. SUMMARY
We demonstrated that combining IE and KDD is a viable approach to text mining by showing that mined rules
from an automatically extracted database are fairly accurate in comparison with those discovered from a manually
constructed database. We first presented a framework called DiscoTEX employing an IE module for transforming natural
language documents into structured forms and a KDD module for mining prediction rules. While information
retrieval approaches view texts as sets of terms, each of which behaves based on some form of frequency distribution,
traditional machine learning approaches view texts as sets of features whose combinations are usually learned by inductive
methods. In order to exploit richer information provided by an underlying IE system about the structure of individual
documents, we combined traditional ways of representing documents with the feature vector model. Finally, experimental
results obtained on a corpus of USENET job postings with an initial implementation of the DiscoTEX framework are
presented and discussed.

REFERENCES
[1] DARPA (Ed.). (1998). Proceedings of the eventh Message Understanding Evaluation and conference (MUC-98),

Fairfax, VA. Morgan Kaufmann.

[2] Calif, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for information extraction. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), pp. 328-334 Orlando,
FL

[Dixit 5(4): April 2018] ISSN 2348 – 8034
Impact Factor- 5.070

(C)Global Journal Of Engineering Science And Researches

205

[3] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,CA.

[4] Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A midterm report. In Proceedings of the European
Conference on Machine Learning, pp. 3-20 Vienna

[5] Stevenson, M., & Ciravegna, F. (2003). Information extraction as a Semantic Web technology:
Requirements and promises. In Ciravegna, F., & Kushmerick, N. (Eds.), Papers from the ECML/PKDD-
2003

[6] Salton, G. (1989). Automatic Text Processing: The Transformation, Anal- ysis and Retrieval of Information by
Computer. Addison-Wesley. Sankof, D., & Kruskal, J. B. (Eds.). (1983). Time Warps, String Edits and
Macromolecules: the Theory and Practice of Sequence Comparison. Addison-Wesley.

[7] Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., & Slattery, S. (2000). Learning to
construct knowledge bases from the World Wide Web. Artificial Intelligence, 118 (1-2), 69-113.

